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Rotating Machinery and associated
systems for

— Oil & Gas
— Auviation
— Liquid Propulsion
— Power Generation

Specialize in developing technologies and
prototype demonstration

— Support OEMs in transitioning new
technologies to products

Including energystorage & sCO2
technologydevelopment
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SWRI Small-Scale PHES Demonstration
Fundedby €l [JCIFe Project team of @’ MALTA

Project Description:

Demonstrate operation of a Air Brayton PHES at laboratory scale to verify system control strategies. Address
firstimplementation challenges and reduce the number of unknown unknowns.

Main Outcomes:

e Data from transient and steady state operation
* Verification of control strategies

e Address firstimplementation challenges

* Reducedrisk for full-scale implementation

Project Timeline:

* Design Complete — August 2020

* Hardware Procurement Complete — February 2021

* Assembly & Commissioning Complete — September 2021
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C h a rge M Od e CO | d Sta rt e Direction of heat transfer in Hot Heat Exchanger

switches during Charge Mode start-up
e Controls & sequencing to balance
* Thermal ramp rate,
e Storage media management,
e System complexity, etc.
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The path forward for PTES

. —o— Discharge efficiency —a— Coefficient of Performance
1' What are the key metrics to enable deployment Of PTES? —8-— Capital Cost of Energy Store ($/kWh) Capital Cost of Power (5/kW)

. SSS O T it

« Commercial readiness is a function of temperature
and scale. Key Hardware: Compressor, HX, valves

LCOS (¢/kWh)

» Systems capable of integrating with various use cases
and existing infrastructure will be critical to success.

Think Legos, not single package. °
1.40
What is the ideal PTES configuration? .
. o 40% 80% 100% 120% 140%
What heat eXChangerS exist or can be develODEd for 550 °C+? Variation of each of the 4 variables in the legend above

* Thermaltransient capability (Mechanical integrity and
thermal inertia)

* Bidirectional Clearly, these are all important factors, and
e ARPA-E HITEMMP an optimal balance will arise, but this
4. Beyond component development, what can enable PTES might not look the same for all use cases.

deployment?
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The optimal architecture & integration?

100%

« Use case and integration case specific, even within hybrid o

CSP applications
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— Existing infrastructure

60%
— Local energy market, other renewables or fossil assets 50%

40%

. . . 30%

e PTES has natural synergy with CSP applications
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Annual ERCOT generation mix
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mCoal mGas mNuclear mWind = Solar

Air PTES sCO2 PTES
e Lower pressure conditions * Higher pressure
* Thinner-walled hardware * Compact pipe and hardware sizes
* Higher sensitivity to pressure loss * Thermal masses due to thick walls would
* Generally, larger pipe size likely still be high
e Make-up air readily available * Mates well with no cold storage options, however

maybe not optimal
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Possible first implementation

Demonstrate Heat Pump

» Use as pre-heat to receiver or
in addition to receiver

e Cold storage optional

Use existing power
generation system

&
~
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What else for PTES deployment?

 R&ND: Operation & controls considerations

— Charge mode surge protection

— Storage media management for optimal performance

— Controls sequencing for fast transients

* Non R&D: Asset-owner buy-in

— Regulatory implications
— PTES needs to out-perform

e Peaker units
e Batteries

— More instances of thermal storage

SwRI
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